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bstract

A quantitative structure–property relationship (QSPR) model was constructed to predict the auto-ignition temperature (AIT) of 118 hydrocarbons
y means of artificial neural network (ANN). Atom-type electrotopological-state indices were used as molecular structure descriptors which
ombined together both electronic and topological characteristics of the analyzed molecules. The typical back-propagation (BP) neural network
as employed for fitting the possible non-linear relationship existed between the atom-type electrotopological-state indices and AIT. The dataset
f 118 hydrocarbons was randomly divided into a training set (60), a validation set (16) and a testing set (42). The optimal condition of the neural
etwork was obtained by adjusting various parameters by trial-and-error. Simulated with the final optimum BP neural network [16-8-1], the results
how that most of the predicted AIT values are in good agreement with the experimental data, with the average absolute error being 21.6 ◦C, and

he root mean square error (RMS) being 31.09 for the testing set, which are superior to those obtained by multiple linear regression analysis and
raditional group contribution method. The model proposed can be used not only to reveal the quantitative relation between AIT and molecular
tructures of hydrocarbons, but also to predict the AIT values of hydrocarbons for chemical engineering.

2008 Elsevier B.V. All rights reserved.
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. Introduction

The auto-ignition temperature (AIT) is defined as the lowest
emperature at which a material in air begins to ignite in the
bsence of an external ignition source, such as spark or flame.
uto-ignition occurs when the rate of heat produced by exother-
ic oxidation reactions overbalances the rate at which heat is

ischarged to the surroundings. Since auto-ignition occurs in air
ithout the presence of an ignition source, it is an important fire
erformance parameter in process design and operational pro-
edures. In many common situations, such as the manufacture,

andling, transport, and storage of combustible materials, the
IT has been widely used to characterize the hazard potential
f chemicals.
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The measurement of AIT is dependent on many experimental
actors, such as the sample concentration, flow condition, the ini-
ial pressure, the volume of the sample as well as the geometry of
he experimental vessel, all of which can affect the AIT to a cer-
ain extent. Based on combinations of these factors, the measured
IT can vary by hundreds of degrees. Besides, the measure-
ent of AIT is laborious, because the number of compounds for
hich data are needed is very large. Moreover, for toxic, volatile,

xplosive, and radioactive compounds, the measurement is more
ifficult and even impossible. Thus the development of theo-
etical prediction methods, which are desirably convenient and
eliable for predicting the AIT is required.

Many previous studies have shown that the AIT of a com-
ound is very dependent on its structure, and several methods
or estimating pure components AIT from their molecular struc-
ure alone have been reported in the literature [1–5]. Mitchell
nd Jurs [3] developed mathematical models which related the

tructures of a heterogeneous group of organic compounds to
heir AIT values. The molecular structures of the compounds are
epresented by calculated numerical descriptors which encode
heir topological, electronic, and geometric features. These
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escriptors are used to develop several multiple linear regres-
ion (MLR) and artificial neural network (ANN) models for
redicting the AIT of hydrocarbons, halohydrocarbons, and
ompounds containing oxygen, sulfur, and nitrogen, respec-
ively. The models developed were reported to have predictive
bility within the range of the experimental error of AIT mea-
urements for heterogeneous group of organic compounds, with
oot mean square errors (RMS) of testing sets from 5.11 to
2.5 ◦C. Albahri [4] applied the structural group contribution
ethod to develop a theoretical method for predicting the AIT

f pure hydrocarbons. The method was used to probe the struc-
ural groups that have significant contribution to the overall AIT
roperty and arrive at a set of 20 structural groups which can
est represent the AIT for 138 hydrocarbons. The proposed
ethod was reported to predict the AIT of pure components

rom only the knowledge of the molecular structure, with an
verage error of 4.2% and a correlation coefficient of 0.92.
hese successful studies suggested that more information can be
ained through a further investigation of this structure–property
elationship.

In this work, we used the quantitative structure–property
elationship (QSPR) method to investigate the quantitative math-
matical relationships between AIT and molecular structures of
ure hydrocarbons. Moreover, the electrotopological-state (E-
tate) indices were employed as descriptors to encode structural
haracteristics of the studied compounds. The atom-type E-state
ndices were recently introduced by Hall and Kier [6] for the
escription of molecules at the atomic level. These indices not
nly combine together both electronic and topological charac-
eristics of the analyzed atom, but also take into account the
inding environment of the atom in the analyzed molecule, and
ave proven to be effective descriptors in QSPR studies for
redicting many physical and chemical properties of pure com-
ounds, such as the critical temperature [7], boiling point [6,7],
queous solubility [8,9], partition coefficient [10], log P [11],
he toxicity [12], and so on. These properties covered almost
ll the primary aspects of pure component properties except
hat related to the flammability characteristics of compounds
uch as flash point, upper and lower flammability limits and
IT.
The main goal of the present work is to further verify the

otential of E-state indices for application to AIT prediction.
hrough an extension of these indices by introducing more
etailed indices for –CH2–, >CH–, >C<, CH–, and C<
roups, as well as the employment of the widely used non-linear
odeling technique of artificial neural network(ANN), we wish

hat this study could be a new attempt for predicting the AIT
alues and improve the prediction results.

. Methods

The QSPR models in this study were developed using arti-
cial neural network program and multiple linear regression

outine based on the atom-type E-state indices. All computa-
ions were executed on a Pentium PC with 512M RAM and CPU
peed of 2.4 G. The flowchart in Fig. 1 outlines the procedure
sed in this study.

2
l
o
s

Fig. 1. Flowchart of the method used to develop AIT prediction model.

.1. Dataset

The experimental AIT values of hydrocarbons utilized in the
resent study were collected from the following sources:

1) International Chemical Safety Cards (ICSCs) on the Internet
[13].

2) Chemical and other safety information database of Physical
and Theoretical Chemistry Laboratory at Oxford University
(UK) [14].

3) Chemical database of the department of chemistry at the
University of Akron (USA) [15].

4) Chemical manufacturer’s MSDSs [16].
5) Lange’s Handbook of Chemistry [17].

Dealing with such a large amount of data raises issue of reli-
bility. As we know, the experimental AIT values are dependent
n many experimental factors, so the overlapped compounds
n different sources frequently possess different experimental
IT values, especially for compounds with higher molecular
eights. The experimental values sometimes can differ by as
uch as 71 ◦C. For example, Ref. [17] supplies experimental
IT value of 258 ◦C for methylcyclopentane, while Chemi-

al manufacturer’s MSDSs (Sigma–Aldrich Inc.) gives 329 ◦C.
uch tremendous discrepancies would disturb pure structure

nvestigations and influence the establishment of reliable QSPR
odels.
As we know, most organizations assess the reliability of their

eported experimental values and also updated the data when
ecessary. Such as the International Chemical Safety Cards
ICSCs) on the Internet, most data of which were reviewed after

000, which are judged to be more reliable than those published
ong before. Thus the ICSCs are considered as a major source
f reliable data by organizations such as EU, UNO, etc. Con-
equently, for QSPR study of the AIT here, we chose the most
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ecently reported experimental data as the final data for each
ompound among different reported values.

The dataset finally selected consisted of 118 structurally
iverse hydrocarbons which comprised of alkane, olefin, alkyne,
nd aromatic hydrocarbons. The number of carbon atoms in
he compounds varied from 2 to 16. The AIT values for these
ompounds were in the range from 202 to 640 ◦C.

.2. Partition of the atom-type E-state indices

The key to the QSPR study is the selection of molecular
escriptor. An efficient descriptor must reflect all of the struc-
ural information as accurately as possible. In this paper, the
roblem was expected to be tackled by employing the widely
sed atom-type E-state indices [6–12], which combined together
oth electronic and topological characteristics of the analyzed
olecules. A detailed description of the calculation of atom-type
-state indices can be referred in the original work of Hall and
ier [6]. For each atom type in a molecule, the E-state indices
ere summed and can be used in a group contribution man-
er. For the whole 118 hydrocarbon compounds studied in the
atasets, a set of 11 atom-type E-state indices would have been
elected for the analysis according to Ref. [6]. However, the atom
ypes provided by Hall and Kier [6] were only based on a gen-
ral partition for some atom groups, such as the –CH2–, >CH–,
C<, CH–, and C< groups, of which the binding environment
straight chain or cyclic ring) has not been distinguished. So in
he present study, the atom type of each group mentioned above

as further extended to be a straight chain one and a cyclic ring
ne. The scheme of all the atom types and their E-state indices
ymbols was shown in Table 1. A extended set of 16 atom-type
-state indices were obtained, which were expected to make the

able 1
ixteen atom types and their coding number and E-state indices symbols

o. Atom-typea E-state indices symbolb

1 –CH3 SsCH3
2 CH2 SdCH2
3 CH StCH
4 C– StsC

5 –CH2– SssCH2
6 (–CH2–)R

7 >CH– SsssCH
8 (>CH–)R

9 >C< SssssC
0 (>C<)R

1 CH– SdsCH
2 ( CH–)R

3 aCHa SaaCH

4 C< SdssC
5 ( C<)R

6 saCa SsaaC

a R referred to the atom-type in cyclic ring compound.
b According to Ref. [6].
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Fig. 2. The neural network architecture used in this work.

artition of the atom types more reasonable and distinguish the
someric compounds more effectively.

The E-state indices of all the atom types for each com-
ound were calculated. The results showed that the structure
f various hydrocarbon compounds can be characterized by var-
ous atom-type E-state indices, that is to say, atom-type E-state
ndices can be used to distinguish the molecular structure of
hese 118 hydrocarbon compounds successfully, with the struc-
ure distinguishability of 100%. In such case, the weak ability
n distinguishing the isomeric compounds by traditional group
ontribution method can be overcome.

.3. Modeling methods

Both the ANN method and the MLR method were employed
o model the relationship between the AIT values of hydro-
arbons and the atom-type E-state indices selected above for
he purposes of comparison. The dataset was randomly divided
nto a training set with 76 compounds and a testing set with 42
ompounds for modeling. The training set was used for model
evelopment, while the testing set used for model validation.
n addition, the training set and testing set used for both MLR
nalysis and ANN modeling consisted of the same compounds.

For the MLR analysis, it was performed with the SPSS
oftware (Version 11.0; SPSS Inc., Chicago, IL) running on a
entium PC. The quality of the calculated model was judged by
tatistical characteristics such as correlation coefficient, R, the
oot mean square error, RMS, and Fischer significance value, F.

oreover, for the atom-type E-state indices which were found
o be non-significant in the regression model (P > 0.05), they
ould be omitted from the final equation.
For the ANN modeling, it was carried out using the STA-

ISTICA Neural Networks (SNN) software. Several ANN

rchitectures were tried and the one that best simulated the AIT
as retained. The final network structure used in this work is

hown in Fig. 2, which was a fully connected, feed-forward,
hree-layer neural network. As can be seen from Fig. 2, the net-
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Fig. 3. RMS as a function of the number of neurons in the hidden layer.

ork consists of an input layer, an output layer and one hidden
ayer. The input layer has a number of neurons which is equal
o the number of atom-type E-state indices being investigated.
he hidden layer is a single layer with a certain number of neu-

ons, which will be discussed as following, and the output layer
onsists of one neuron representing the predicted AIT property.
ignals from input layer are transferred to output layer through
idden layer. In this paper, a multilayer feed-forward network
ith the algorithm of back-propagation was used as the simu-

ator, and a logistic f(x) = 1/[1 + exp(−x)] transfer function was
mployed both for hidden and output neurons. The inputs to the
etwork algorithm are E-state indices of each atom type in the
iven substance. If a certain input atom type did not exist in a
olecule, an input value of zero was assigned to that atom type

n the network.
Before the beginning of the training process, the optimal

ondition of the neural network was obtained by adjusting vari-
us parameters by trial-and-error. These parameters include: the
earning rate, the momentum constants, the number of neurons
n the hidden layer, and how to prevent overtraining.

The learning rate determines the speed at which the weights
hange, and the momentum constant prevents sudden changes in
ttaining the results. In this work, we empirically set the learning
ate and momentum at 0.01 and 0.1, respectively [18].

For the optimal number of neurons in the hidden layer, as
iscussed elsewhere [18], it was determined by varying the num-
er of hidden neurons and observing the root mean square error
RMS), which was used as a measure of the prediction error of
he trained model. Calculations of RMS were performed with
eave-one-out cross-validation and the average RMS of 10 runs
as adopted. Leave-one-out cross-validation referred to remov-

ng one sample in the dataset using for the test set while the rest
sing as training set. Such process was repeated until all samples
f the dataset were used as the test sample. Finally, the number
f neurons that gave the lowest RMS was chosen. As can be

een from the plot of RMS versus hidden neurons (Fig. 3), the
ptimal number of neurons in the hidden layer was 8.

In addition, it was very important to know whether the net-
ork has been over-trained. However, the model built on only

t
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aterials 157 (2008) 510–517 513

training set and a testing set cannot be confidently considered
o be an un-overtrained one. Thus the training set was further
ivided randomly into a smaller training set with 60 compounds
nd a cross-validation set with 16 compounds. The optimal train-
ng endpoint and network architecture was determined on the
asis of the cross-validation set. As we known, the training error
lways decreases with an increase of training epochs, while the
alidation error has the lowest point. When the epoch reaches
he point, the process of training is stopped. At that time, the
est training epoch can be achieved. In this work, the optimal
raining epoch is about 10,000.

. Results and discussion

The MLR analysis was performed with the SPSS software
unning on a Pentium PC. Two atom-type E-state indices (>C<)R
nd ( C<)R were found to be non-significant in the regres-
ion analysis and were thus omitted from the final equations.
s a result, the following regression equation was obtained

or the training set (x1–x16 referred to the atom-type 1–16 in
able 1):

IT = 498.858 − 25.162x1 − 10.264x2 − 24.232x3

−6.075x4 − 13.065x5 − 22.332x6 + 58.852x7

+24.950x8 + 335.108x9 − 21.480x11 + 8.581x12

−6.408x13 + 20.274x14 + 51.376x16 (1)

= 0.870, RMS = 39.07, F = 12.95, n = 76

n this equation, n is the number of compounds used in the
odel. As can be seen from the equation, the quality of the

alculated model was not as good as expected. An analysis of
esiduals showed that there were four outliers (1,7-octadiene,
-heptene, 1,4-diethylbenzene and cyclododecene) whose esti-
ation errors were higher than two times RMS error. The

ource of error for this type of outlier can be attributed either
o the observed AIT data or to structural features of the

olecule that are not properly encoded in the model but that
ave a large influence on the observed AIT. After excluding
hese four compounds, the RMS error and average absolute
rror were 37.86 and 28.6 ◦C for the remaining 72 com-
ounds.

The model was also used to predict the AIT values for 42
ompounds in the testing set, with RMS error of 40.76 and aver-
ge absolute error of 32.4 ◦C, which was a little higher than the
eported experimental error of +30 ◦C. The predicted results of
esting set were shown in Table 2, in which the predicted AIT of
ach testing compound can be compared with the experimental
ne.

Since the attempt to develop a linear model by MLR analysis
as not as successful as expected, it is of reasonable confidence
o believe that some strong non-linear dependencies may exist
etween the atom-type E-state indices and AIT of hydrocarbon
ompounds. In such case, an application of non-linear method
f data analysis might provide improvement in the modeling.
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Table 2
Comparison of predicted and experimental AIT for the 42 compounds in the testing set

No. Compound Experimental AIT (◦C) Predicted AIT (◦C)

MLR ANN SGCM [4]

1 Propane 432 375.6 413.6 407.3
2 Butane 405 354.6 319.9 358.8
3 2-Methyl-2-butene 240 326.0 212.6 291.1
4 2,2-Dimethylpropane 450 446.2 468.5 475.6
5 cis-2-Pentene 288 289.3 279.7 283.9
6 1-Hexyne 263 265.7 244.0 231.6
7 Methylcyclopentane 329 333.3 316.6 329.1
8 4-Methylpentene 300 341.2 322.2 358.0
9 Cyclohexane 260 297.9 282.5 284.8

10 Ethylcyclopentane 260 317.9 300.7 287.1
11 2,4-Dimethylpentane 337 356.1 363.8 351.0
12 Methylcyclohexane 283 299.2 291.5 294.4
13 Toluene 422 448.6 466.7 539.6
14 n-Heptane 223 294.3 213.7 241.8
15 Isoheptane 280 327.0 271.4 289.4
16 1-Octene 250 275.9 235.0 230.7
17 2,4,4-Trimethyl-1-pentene 391 391.8 387.5 367.7
18 2,2,3-Trimethylpentane 430 441.1 439.0 400.2
19 2,2,4-Trimethylpentane 410 419.3 429.8 400.2
20 Styrene 490 418.3 489.6 527.5
21 Propylcyclopentane 269 296.1 262.4 252.3
22 Octane 210 274.4 206.2 218.8
23 3,4,4-Trimethyl-2-pentene 325 330.9 321.6 308.9
24 1,3,5-Trimethylcyclohexane 314 295.1 328.0 314.6
25 Isopropylcyclohexane 283 294.9 274.7 272.3
26 2,2,3,3-Tetramethylpentane 430 444.8 448.4 449.6
27 2,3,3,4-Tetramethylpentane 437 411.0 442.5 420.7
28 1-Methyl-2-ethylbenzene 448 467.3 467.6 436.3
29 Alpha-methyl styrene 445 455.6 454.8 498.2
30 2-Methylnonane 214 267.3 229.1 209.6
31 tert-Butylbenzene 450 433.3 502.9 548.6
32 Cyclodecane 235 163.9 141.6 205.3
33 4-Ethyloctane 235 275.5 233.8 209.6
34 2,3-Dimethyloctane 231 298.1 275.3 237.4
35 1,3-Diethylbenzene 450 451.0 445.0 440.7
36 4-Isopropyl-1-methylcyclohexane 306 293.1 294.7 281.2
37 1,2-Diethylbenzene 395 455.7 446.2 387.4
38 p-tert-Butyltoluene 510 457.1 516.1 529.9
39 1-Methyl-3,5-diethylbenzene 461 481.4 458.9 478.5
40 Undecane 240 220.2 320.6 202.8
41 Tridecane 202 175.8 230.2 222.8
42 Tetradecane 235 156.1 239.2 234.0

The average absolute error (◦C) 32.4 21.6 24.8
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RMS
R

hen artificial neural network with back-propagation learning
lgorithm was used to explore the presence of non-linear depen-
encies and develop improved models.

The same set of 16 atom-type E-state indices as used in MLR
nalysis was employed as the inputs in neural network simu-
ation. With the optimum network architecture represented by
16-8-1], the simulation process was repeated 10 times with
ifferent random starting weights between neurons. Then the

veraged AIT value of each compound was calculated, which
as regarded as the final predicted AIT value. As a result, the

verage absolute error of training, validation and testing sets
ere 12.8, 26.9 and 21.6 ◦C, respectively. The RMS were 17.49,

u
i
a
a

40.76 31.09 34.01
0.902 0.952 0.949

4.78 and 31.09, and the correlation R were 0.987, 0.955 and
.952, respectively. The predicted results of training set and val-
dation set were shown in Table 3, while the predicted results
f testing set were shown in Table 2. Obviously, compared with
he aforementioned MLR model, the ANN model can provide
etter results here.

The experimental and predicted AIT of the training, valida-
ion and testing sets were plotted in Fig. 4. Regression lines were

sed for comparing the values obtained by this model with exper-
mental values. As can be seen from Fig. 4, the calculated slope
nd intercept did not differ greatly from the “ideal” values of 1
nd 0, respectively, and most of the predicted AIT values agreed
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Table 3
Experimental and predicted AIT by ANN for 76 compounds in the training set and validation set

No. Compounda Experimental AIT (◦C) Predicted AIT (◦C) Deviation (◦C)

1 Ethylene 450 478.4 28.4
2 Propylene 460 445 −15
3 Cyclopropane 498 504.6 6.6
4 2-Butene 324 343.7 19.7
5 1,3-Butadiene 420 391 −29
6 Isobutane 460 467.1 7.1
7 Isobutene 465 463.8 −1.2
8 Cyclopentane 361 358.6 −2.4
9 Cyclopentene 395 381.7 −13.3

10 Isopentane 420 379.1 −40.9
11 Isoprene 220 231.8 11.8
12 3-Methyl-1-butene 365 374.7 9.7
13 n-Pentane 260 264.7 4.7
14 1-Pentene 272 311.3 39.3
15 Cyclohexene 310 342.7 32.7
16 2,3-Dimethylbutane 420 445.7 25.7
17 2,3-Dimethyl-1-butene 370 377.7 7.7
18 2,3-Dimethyl-2-butene 401 412.9 11.9
19 2-Ethyl-1-butene 315 317.1 2.1
20 1-Hexene 253 273 20
21 trans-2-Hexene 245 235.8 −9.2
22 2-Methylpentane 306 313.7 7.7
23 3-Methylpentane 278 317.8 39.8
24 1-Heptene 260 249 −11
25 3-Methylhexane 280 275.2 −4.8
26 2,2,3-Trimethylbutane 450 457.8 7.8
27 1,2-Dimethylcyclohexane 304 307.3 3.3
28 Ethylcyclohexane 262 267.7 5.7
29 Ethylbenzene 432 449.4 17.4
30 1,7-Octadiene 230 242 12
31 1-Octyne 225 229.1 4.1
32 2,3,3-Trimethylpentane 430 433.3 3.3
33 m-Xylene 527 524.4 −2.6
34 o-Xylene 463 501.5 38.5
35 p-Xylene 529 499.5 −29.5
36 1,3,5-Trimethylbenzene 550 509 −41
37 3-Methyloctane 220 236.5 16.5
38 4-Methyloctane 225 237.2 12.2
39 Nonane 205 205.2 0.2
40 Propylcyclohexane 248 255.8 7.8
41 2,4-Dimethyl-3-ethylpentane 390 381.9 −8.1
42 1,2,3-Trimethylbenzene 470 511.4 41.4
43 1,2,4-Trimethylbenzene 515 509.8 −5.2
44 n-Butylcyclohexane 245 252 7
45 Butylbenzene 412 406.7 −5.3
46 sec-Butylbenzene 418 405.3 −12.7
47 p-Cymene 436 453.3 17.3
48 Decane 210 208.5 −1.5
49 1-Decene 235 225 −10
50 1,4-Diethylbenzene 430 444.6 14.6
51 Divinylbenzene 470 472.5 2.5
52 1,2,3,4-Tetrahydronaphthalene 385 388.8 3.8
53 Cyclododecene 258 257 −1
54 Dicyclohexyl 245 247 2
55 Dodecane 205 221.8 16.8
56 Methyl biphenyl 482 479.8 −2.2
57 Diphenylmethane 485 483.7 −1.3
58 Bibenzyl 480 482.6 2.6
59 1-Tetradecene 235 236.7 1.7
60 Hexadecene 240 249 9
61 Acetylene 305 400.3 95.3
62 1-Butene 384 368.4 −15.6
63 Cyclopentadiene 640 607.9 −32.1
64 2-Methyl-1-butene 365 379.4 14.4
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Table 3 (Continued )

No. Compounda Experimental AIT (◦C) Predicted AIT (◦C) Deviation (◦C)

65 2,2-Dimethylbutane 425 453.1 28.1
66 n-Hexane 225 231.5 6.5
67 2,3-Dimethylpentane 337 376.6 39.6
68 trans-1,3-Dimethylcyclohexane 306 307.8 1.8
69 2,4,4-Trimethyl-2-Pentene 308 311.8 3.8
70 Cumene 420 435.7 15.7
71 Propylbenzene 450 422.5 −27.5
72 2-Vinyl toluene 494 512.1 18.1
73 Decahydronaphthalene 250 274.2 24.2
74 Isobutylbenzene 428 404.2 −23.8
75 1-Dodecene 255 227.7 −27.3
7

to 76
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a The compounds from 1 to 60 composed the training sample, those from 61

ith the experimental values satisfactorily, with the predicted
rrors lower than the reported experimental error of +30 ◦C, for
ll the training, validation and testing sets. Thus, models have
een developed that calculate the AIT values for hydrocarbons
ith accuracy comparable to experiment.
Moreover, since the predicted results obtained by ANN

ethod were better than those obtained by MLR, it showed a
uperior prediction ability of the ANN model and supported
ur aforementioned conjecture that a non-linear relationship
ay exist between the atom-type E-state indices and AIT of

ydrocarbon compounds.
The results of ANN model were also tested for chance effects.
Monte Carlo experiment was adopted for testing, in which

he dependent variables were scrambled. As a result, the testing
odels provided high RMS errors, which were 323.53, 376.46

nd 354.15 for the training, validation and testing sets, respec-
ively. Such errors are hundred times the errors obtained when
he dependent variables were not scrambled. It indicated that
nly the proper dependent variables can be used to generate rea-
onable models, and the results obtained by ANN method here

ere not due to chance.
After that, a general comparison has been made between the

NN model and the work of Albahri [4], who used the tradi-

ig. 4. Correlation between the predicted and experimental AIT for the training,
alidation and testing sets (95) confidence limits for the intercept and slope.
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were the validation sample.

ional structural group contribution method (SGCM) to build the
on-linear model for predicting the AIT values of hydrocarbons.
or the same 42 test samples, the predicted results were shown

n Table 2. The predicted average absolute error of SGCM was
4.8 ◦C, and the RMS was 34.01. The comparison in Table 2
mplied that: the ANN model was based on the atom-type E-
tate indices which describe better the structural features of the
ompounds important for the AIT and thus this model had bet-
er statistical characteristics (correlation R, the average absolute
rror and RMS) for prediction than the SGCM model. In addi-
ion, the current ANN model possesses a smaller number of
nput descriptors (16 versus 20), which need less calculations.
owever, the work of Albahri [4] can provide a direct model

nd preserve the model provided to be unique. These were just
he limitations of the ANN model. Moreover, the SGCM model
as based on larger number of compounds for the training sets

131 versus 76).
Besides, from Table 2 we can see that the ANN model

nd SGCM model can provide better prediction capability here
han the MLR model. Such phenomenon strongly suggested a
on-linear relationship existing between the atom-type E-state
ndices and AIT of hydrocarbons once again.

As also can be seen from Table 2, the predicted AIT values
or methylcyclopentane by MLR, ANN and SGCM methods
ere 333.3, 316.6 and 329.1 ◦C, respectively, all of which
ere close to the value of 329 ◦C used in this work, which is

ust the most recently reported experimental data for methyl-
yclopentane among different reported values. The fact above
emonstrated that the AIT values of hydrocarbons we selected
or the experimental dataset in this study were more than prob-
bly reasonable and reliable.

. Conclusion

In this study, an ANN-based QSPR model was developed for
he prediction of AIT of hydrocarbon compounds using atom-
ype E-state indices. The extended atom-type E-state indices

ere used as molecular structure descriptors, and the ANN
ethod was employed for fitting the possible non-linear rela-

ionship existed between the structure and property. The results
howed that most of the predicted values of AIT agreed with
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